27.07.2024

Химия и Химики № 6 2014

Как отличить титан от стали, алюминия

Первая пара – цветной и черный металлы. Большинство сталей обладают магнитным свойствами. Исключение составляют легированные металлы аустенитного класса. Яркий пример – нержавейка с высоким содержанием никеля. Эта марка стали, как и титан – парамагнетик. Поэтому стандартный вариант с использованием магнита тут неприемлем.

см. статьи:

  • Лом нержавейки – разновиды, описание и цены;
  • Никелевый лом.

Остаются три надежных способа как определить титан в домашних условиях:

  • математический;
  • графический;
  • абразивный;
  • гальванический.

Обозначения достаточно условны, далее раскроем каждый из вариантов подробно.

Читайте также:  Прежде чем резать металлочерепицу болгаркой – задумайтесь о последствиях

Учимся отличать титан, алюминий, нержавеющую сталь, бериллий и магний

Точная идентификация металлов с определением их химического состава при наличии примесей может быть выполнена только в лабораторных условиях или с использованием специального оборудования. Отличить титан от нержавеющей стали аустенитного класса или алюминия довольно сложно. Особенно если у вас имеется один образец и сравнивать не с чем. Все три металла являются парамагнетиками и не реагируют на магнит, имеют серебристый цвет и похожий удельный вес. Но есть несколько проверенных простых способов отличить титан от легированной стали и алюминия.

Проверка анодированием

Известно, что в результате естественного окисления на воздухе на поверхности титана образуется слой оксида TiO2. Электрохимическим способом можно получить оксидный слой с эффектом окрашивания. Для проведения эксперимента необходим 12-вольтовый аккумулятор автомобиля или несколько батареек крона. Титановый образец присоединяют проводом к электроду «+». К электроду «-» присоединяют любой железный стержень, обмотанный кусочком ткани, смоченным в соляном растворе или в любой другой токопроводящей жидкости (уксус, кола). Если этой тканью провести по титановой поверхности, то она мгновенно окрасится, чего никогда не случится с нержавеющими и алюминиевыми изделиями.

Существует и ряд других методов тестирования, позволяющих отличить настоящий титан от других металлов, окружающих нас в быту. Например, при тактильном контакте титановые предметы кажутся более теплыми. Если нагреть одну часть детали, то другая будет оставаться холодной, что говорит о его низкой теплопроводности. Резка титана гораздо тяжелее, чем других металлов. На диск налипают частицы материала, что делает резку нестабильной и небезопасной. Для точного определения титана рекомендуется провести не один, а несколько способов.

Пластичные сплавы со средней прочностью

Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура
АТ-2 2,5 Zr, 1,5 Mo 50 — 80 200 — 300
ОТ4−1 1−2,5 Al, 0,7−2 Mn 50 — 80 200 — 300
ОТ4 3,5−5 Al, 0,8−2 Mn 50 — 80 200 — 300
АТ-3 3 Al, 1,5%(Cr+Fe+Si+B) 50 — 80 200 — 300
ВТ5−1 4−6 Al, 2−3 Sn 50 — 80 200 — 300

Обычную древесину сделали более прочной, чем сталь или титан


Дерево — отличный материал для… всего. Из него делают все, что только можно себе представить. Единственное, чего не хватает — прочности. Многие сорта дерева — очень прочные, но, к сожалению, недостаточно прочные, чтобы их можно было применять более широко. Специалисты из США добились увеличения прочностных характеристик древесины путем специальной ее обработки.

После того, как дерево подвергается обработке по новому методу, его прочность возрастает в десятки раз, оно становится более прочным, чем сталь или титан. При этом древесина по-прежнему остаются дружественным окружающей среде материалом, альтернативой пластикам или металлам. «Фактически, это новый класс материалов с великолепным потенциалом», — заявил Ли Тенг, специалист из Мэрилендского университета. Работа Тенга и его коллег опубликована 7 февраля в авторитетном научном издании Nature.

Попытки укрепить дерево, изменить тем либо иным образом его характеристики не прекращаются десятилетиями. Некоторые методы удачные, другие — не очень. К числу удачных можно отнести выделение микроволокон целлюлозы, что позволяет создавать достаточно устойчивые к внешним воздействиям материалы.

Но Тенг с коллегами решили подойти к проблеме с другой стороны. Исследователи сфокусировались на модифицировании пористой структуры натуральной древесины. Изначально они стали пробовать кипятить различные сорта древесины, включая дуб, в растворе гидроксида натрия и сульфита натрия в течение семи часов. Этот процесс оставил целлюлозную структуру практически нетронутой, но окружающие целлюлозу компоненты частично ушли. Один из таких компонентов — лигнин, полимер, связывающий целлюллозу.

Затем команда поместила на сутки деревянный блок под пресс, одновременно нагрев его до 100 градусов Цельсия. В результате образовались деревянные планки толщиной в пятую часть от прежних параметров. Кроме того, этот материал оказался в три раза плотнее натуральной древесины и в 11,5 раз прочнее. Предыдущие попытки усилить прочностные характеристики приводили к повышению этого параметра максимум в 3-4 раза.

Сканирование волокон нового материала при помощи электронного микроскопа показало, что сдавливание уничтожает целлюлозные трубочки, которые сжимаются и переплетаются вместе. «Вы получаете нановолокна, размещенные вдоль оси роста дерева, сцепленные между собой», — заявил один из участников исследования.

Читайте также:  Как укладывать профлист на крышу своими руками

Для того, чтобы проверить, насколько устойчива «древесина нового типа» к внешним факторам, команда стала выстреливать по паллетам из баллистической пушки, которая обычно используется для проверки прочности военных транспортных средств. Как оказалось, модифицированная древесина выдерживает удар 46-граммового стального снаряда, летящего со скоростью примерно 30 метров в секунду.

Это, конечно, гораздо медленнее, чем скорость пули, вылетевшей из ствола огнестрельного оружия, но все же и это солидное достижение. Такая скорость примерно соответствует скорости автомобиля, движущегося перед столкновением с препятствием. Да, американцы считают, что их метод позволяет создавать материал, пригодный для автомобилестроения.


Эксперты считают, что команда «улучшателей дерева» чрезмерно усложняет процесс, который может быть гораздо более простым. Например, просто воздействие высокой температуры, пара и давления способно значительно улучшить прочностные характеристики материала. А можно просто прокипятить дерево в течение 7 часов в растворе каустической соды. В результате получается достаточно прочный материал. 24-х слойная защита из такого дерева задерживает 9-мм пулю, которой стреляют из пистолета.

Микаэела Идер, исследователь из Института Макса Планка считает, что воздействие давления также упрочняет дерево — хотя в этом случае неясно, насколько сильно имеет место сплетение нановолокон. Тем не менее, авторы оригинальной работы уверены, что только их методика позволяет многократно улучшить прочность дерева. Коллеги согласны с ними, говоря, что у работы большой потенциал, и в будущем можно было бы создать коммерческую технологию для производства прочных строительных материалов из дерева.

Чистая математика

В этом подходе идентификация металлов производится по весу. Недостаток метода проявляется, когда в наличии только один тип металла. Определить в руках, что тяжелее уже не получится, приходится прибегнуть к математическим вычислениям. Способствует этому существенные отличия в плотности металлов:

  • титан – 4.5;
  • железа – 7.8;
  • алюминия и дюрали – 2.7.

Для такого способа определения титана в своем хозяйстве нужно иметь точные весы

Для такого способа определения титана в своем хозяйстве нужно иметь точные весы

Значения параметра приведены в г/куб.см. Остается добавить, что плотность стали зависит от конкретной марки металла. Однако в абсолютных величинах эти отличия несущественны. Поэтому за плотность стали можно смело принимать значение аналогичной характеристики у железа.

Остается только уточнить объем и вес детали или куска металла. Далее, несложные вычисления, покажут, это алюминий, сталь или искомый металл – титан. Как определить объем детали сложной формы? Тут лучший вариант – закон Архимеда. Масса вытолкнутой жидкости, при погружении металлической конструкции, позволяет установить ее объем. Ситуацию упрощает плотность воды, эквивалентная 1 кг/куб.дм. Соответственно каждый грамм вытолкнутой жидкости равен одному кубическому сантиметру объема.

Конечно же – это муторный, сложный и неточный способ, но для того, чтобы определить титан дома он имеет место быть.

Так выглядит металл титан

Так выглядит металл титан

Эмалированное покрытие
Сталь

Титан — металл. Свойства титана. Применение титана. Марки и химический состав титана

Вечный, загадочный, космический, материал будущего — все эти и многие другие эпитеты присваиваются в различных источниках титану. История открытия этого металла не была тривиальной: одновременно над выделением элемента в чистом виде трудились несколько ученых.

Процесс изучения физических, химических свойств и определение областей его применения не закончен на сегодняшний день.

Титан — металл будущего, место его в жизни человека еще окончательно не определено, что дает современным исследователям огромный простор для творчества и научных изысканий.

Характеристика

Химический элемент титан (Titanium) обозначается в периодической таблице Д. И. Менделеева символом Ti. Располагается в побочной подгруппе IV группы четвертого периода и имеет порядковый номер 22. Простое вещество титан – металл бело-серебристого цвета, легкий и прочный. Электронная конфигурация атома имеет следующую структуру: +22)2 )8 )10 )2, 1S22S22P63S23P63d24S2. Соответственно, титан имеет несколько возможных степеней окисления: 2, 3, 4, в наиболее устойчивых соединениях он четырехвалентен.

Титан — сплав или металл?

Этот вопрос интересует многих. В 1910 году американский химик Хантер получил впервые чистый титан. Металл содержал всего 1 % примесей, но при этом его количество оказалось ничтожно мало и не давало возможности дальнейшего исследования его свойств. Пластичность полученного вещества достигалась толькопод воздействием высоких температур, при нормальных условиях (комнатной температуре) образец был слишком хрупок.

Фактически этот элемент не заинтересовал ученых, так как перспективы его использования казались слишком неопределенными. Сложность получения и исследования еще больше снизили потенциал его применения. Только в 1925 году ученые-химики из Нидерландов И. де Бур и А. Ван-Аркел получили металл титан, свойства которого привлекли внимание инженеров и конструкторов всего мира.

История исследования этого элемента начинается с 1790 года, именно в это время параллельно, независимо друг от друга, двое ученых открывают титан как химический элемент. Каждый из них получает соединение (оксид) вещества, не сумев выделить металл в чистом виде. Первооткрывателем титана считается английский минеролог монах Уильям Грегор. На территории своего прихода, расположенного в юго-западной части Англии, молодой ученый начал изучение черного песка долины Менакэна.

Читайте также:  Какой металл подобрать для изготовления кованого забора

Результатом опытов с магнитом стало выделение блестящих крупиц, которые являлись соединением титана. В это же время в Германии химик Мартин Генрих Клапрот выделил новое вещество из минерала рутиле. В 1797 году он же доказал, что открытые параллельно элементы являются аналогичными. Двуокись титана более века являлась загадкой для многих химиков, получить чистый металл оказалось не по силам даже Берцелиусу.

Новейшие технологии XX века значительно ускорили процесс изучения упомянутого элемента и определили начальные направления его использования. При этом сфера применения расширяется постоянно. Ограничить её рамки может только сложность процесса получения такого вещества, как чистый титан. Цена сплавов и металла достаточно высока, поэтому на сегодняшний день он не может вытеснить традиционное железо и алюминий.

Происхождение названия

Менакин — первое название титана, которое применялось до 1795 года. Именно так, по территориальной принадлежности, назвал новый элемент У. Грегор. Мартин Клапрот присваивает элементу в 1797 году наименование «титан». В это время его французские коллеги во главе с достаточно авторитетным химиком А. Л.

Лавуазье предлагают именовать вновь открытые вещества в соответствии с их основными свойствами. Немецкий ученый не был согласен с таким подходом, он вполне обоснованно считал, что на стадии открытия достаточно сложно определить все характеристики, свойственные веществу, и отразить их в названии.

Однако следует признать, что интуитивно выбранный Клапротом термин в полной мере соответствует металлу — это неоднократно подчеркивали современные ученые. Существуют две основные теории возникновения названия титан. Металл мог быть обозначен так в честь эльфийской царицы Титании (персонаж германской мифологии). Такое название символизирует одновременно легкость и прочность вещества.

Большинство ученых склоняются к версии использования древнегреческой мифологии, в которой титанами называли могучих сыновей богини земли Геи. В пользу этой версии говорит и название открытого ранее элемента — урана.

Нахождение в природе

Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе характеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое — приблизительно 0,001 мг/л.

Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений.

Для практического использования наибольшее значение имеют следующие минералы:

  1. Ильменит (FeTiO3).
  2. Рутил (TiO2).
  3. Титанит (CaTiSiO5).
  4. Перовскит (CaTiO3).
  5. Титаномагнетит (FeTiO3+Fe3O4) и т. д.

Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма характерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.

Физические свойства

Титан – цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0С его плотность составляет 4,517 г/см3. Вещество имеет низкую удельную массу, что характерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные характеристики выше, чем у обоих элементов.

Основными свойствами металлов, которые учитываются при определении сферы их применения, являются предел текучести и твердость. Титан прочнее алюминия в 12 раз, железа и меди — в 4 раза, при этом он значительно легче. Пластичность чистого вещества и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката.

Отличительная характеристика титана – его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны.

Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.

Рисунки на стекле

Это наиболее доступный метод, как отличить титан в домашних условия, но им нужно овладеть и иметь опыт работы с титаном. Металл оставляет характерные несмываемые следы на стекле, кафеле. Достаточно провести заостренным краем металла по одному из указанных материалов. Это именно следы, а не царапины. Подобным способом часто разрисовывают окна общественного транспорта. Отмыть титановую графику на кафеле можно раствором плавиковой кислоты, связываться с ней следует предельно осторожно.

Читайте также:  Уход за ножами с клинками из дамасской, высокоуглеродистой и легированной сталей

Это метод отличается простотой и эффективностью. Титан, вопреки бытующему мнению, оставляет след даже на загрязненном стекле. Так что обезжиривать его поверхность не обязательно. Напротив, любые марки стали и алюминия способны разве что едва поцарапать стекло. Это отличный метод, чтобы определить титан.











Нержавеющие стали: как состав влияет на свойства

Влияние титана на свойства стали

Легированные стали занимают значительную долю рынка металлургической продукции. К ним относятся так называемые «нержавейки» — группа сплавов, отличающихся повышенной устойчивостью к коррозии. Со времени появления номенклатура таких сталей расширилась до нескольких сотен наименований. Поэтому были разработаны система их классификации и маркировка.

Стоит заметить, что название «нержавеющая сталь» не совсем корректно отражает ее свойства. Любой железоуглеродистый сплав подвержен воздействию кислорода и агрессивных веществ, но для того, чтобы это отразилось на эксплуатационных свойствах, нужно разное время. Поэтому нержавеющие стали правильнее называть коррозиестойкими.

По составу

В качестве легирующих добавок, повышающих устойчивость железоуглеродистого сплава к образованию ржавчины, используются хром, никель, ванадий, молибден, титан и некоторые другие. Коррозионную стойкость также повышают вводимые для раскисления и нейтрализации серы марганец и кремний. По основным легирующим элементам нержавеющие стали классифицируются как хромистые, марганцовистые и т. д. Некоторые добавки используются для придания сталям особых структурных или технологических свойств, например, для дробления карбидов, повышения ударной вязкости.

Базовыми легирующими элементами нержавеек считаются хром и никель. Они оба входят в твердый раствор с железом, повышают сопротивляемость коррозии. При окислении они образуют на поверхности стального изделия тонкую непроницаемую для кислорода пленку, устойчивую к химическим, электрохимическим и атмосферным воздействиям. Никель расширяет область аустенита в железоуглеродистых сплавах. Хром сужает ее, но является карбидообразующим элементом и связывает углерод. Соотношение никеля и хрома оказывает определяющее влияние на ударную вязкость, свариваемость и способность воспринимать холодную деформацию.

Углерод, как один из обязательных компонентов сталей, отрицательно влияет на сопротивляемость к коррозии. Однако от его содержания зависит твердость и износостойкость стали. Например, 95Х18 имеет менее выраженные коррозионностойкие свойства в сравнении с 40Х13, несмотря на более высокое содержание хрома.

По свойствам

Более наглядное представление о сплавах дает разделение на группы по свойствам:

  • Коррозионностойкие. Сталиотличаются высокой сопротивляемостью к атмосферной коррозии, эксплуатируются при нормальных условиях в нагруженном состоянии. Примерами могут служить нержавейки, используемые для изготовления посуды и оборудования для пищевой промышленности: 08Х18Н10, 20Х13, 30Х13.
  • Жаростойкие. Отличительная черта таких сплавов – высокая сопротивляемость к образованию окалины при высоких температурах. Жаростойкие нержавеющие стали применяются для изготовления теплообменников котельных и пиролизных установок (15Х28), клапанов автомобильных и авиационных двигателей (40Х10С2М), деталей для нагревательных металлургических печей (10Х23Н18).
  • Жаропрочные. Разработан ряд сплавов, способных работать под нагрузкой при высоких температурах без существенных деформаций и разрушения. В них используются сложные системы легирования (05Х27Ю5, 15Х12ВН14Ф, 37Х12Н8Г8МФБ). Умеренной жаропрочностью также обладают стали типа 20Х13.

По структуре

По микроструктуре нержавеющие стали делятся на следующие классы:

  • аустенитные;
  • ферритные;
  • мартенситные;

Кроме них существуют промежуточные группы:

  • аустенито-ферритные;
  • мартенсито-ферритные;
  • мартенсито-карбидные.

Большое влияние на устойчивость к коррозии оказывает термообработка, поскольку влияет на фазовый состав большинства нержавеющих сталей. Устойчивость снижается при возникновении карбидной неоднородности. Этим явлением обусловлена так называемая межкристаллическая коррозия. При нагреве сталей до температур в интервале 500 – 800 °C на границах зерен образуются цепочки карбидов и участки со сниженным содержанием хрома. В теле зерна содержание легирующих элементов остается высоким. Такой вид коррозии часто наблюдается в зонах сварных швов. Для борьбы с этим явлением состав стали стабилизируют введением небольшого количества титана.

Аустенитные стали

При кристаллизации аустенитные стали образуют однофазную систему с кристаллической решеткой гранецентрированного типа. Один из наиболее ярких представителей класса – сплав 08Х18Н10. Благодаря высокому содержанию никеля в нержавейках этого класса (до 30%) аустенитная фаза сохраняет устойчивость вплоть до – 200 °C, содержание углерода не превышает 0,12%. Стали с такой структурой характеризуются отсутствием магнитных свойств. Большинство из них имеет хорошую механическую обрабатываемость.

Аустенитные стали обязательно подвергаются термообработке – закалке, отпуску или отжигу. Скорость охлаждения практически не изменяет твердости, однако оказывает влияние на устойчивость к жидким и газообразным агрессивным средам, стабилизирует размер зерна устойчивость к деформации.

Читайте также:  ГОСТ 1414-75Прокат из конструкционной стали высокой обрабатываемости резанием. Технические условия

В системы легирования аустенитных хромоникелевых сталей вводят дополнительные элементы:

  • молибдена – для предотвращения питтинга и эксплуатации в восстановительных атмосферах
  • титана и ниобия – для защиты от межкристаллической коррозии.
  • кремния – для повышения кислотостойкости;
  • марганца – для улучшения литейных качеств.

Конструкционные сплавы с повышенной прочностью

Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура
ВТ-4 3,5−4,5 Al, 0,8−2 Mn 80 — 100 300 — 450
ОТ4−2 5,5−7 Al, 0,2−1,8 Mn 80 — 100 300 — 450
ВТ5 4,3−6,2 Al 80 — 100 300 — 450
ВТ-6 5,5−7 Al, 4,2−6 V 80 — 100 300 — 450
ВТ-6с 5−6,5 Al, 5,5−4,5 V 80 — 100 300 — 450
ВТ-20 5,5−7,5 Al, 1,-2,5 Zr, 0,5−2 Mo, 0,8−1,8 V 80 — 100 300 — 450
АТ-4 4,5 Al, 1,5%(Cr+Fe+Si+B) 80 — 100 300 — 450
АТ-6 6 Al, 1,5 (Cr+Fe+Si+B) 80 — 100 300 — 450

Абразивный круг

Идеальный способ как отличить титан от нержавейки для владельцев точильного станка (что, на самом деле, совсем не обязательно). Впрочем, подойдет практически любая абразивная поверхность, даже асфальт. Контакт титана с абразивом сопровождается россыпью искр насыщенно-белого цвета. Взаимодействие стали с абразивной поверхностью характеризуется желтым или красным оттенком. Искр при этом существенно меньше.

Нержавеющие марки стали – пожаробезопасны. Обработка определенных марок нержавейки происходит вообще без искр. Это свойство используется на пожароопасных производствах. Там допускаются исключительно инструменты из нержавеющей стали. Аналогичная методика применяется в вопросе как отличить титан от алюминия. Стачивание последнего на абразивном круге также происходит практически без искр.

Этот способ определения титана можно назвать самым эффективным – цвет искры действительно будет отличным от других металлов. Вообще, тест на искру является одним из самых популярных и правильных для определения и распознования разных металлов.

Видео – как отличить титан от магния и алюминия:

Повышенная коррозионная стойкость сплавов

Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура
4200 0,2 Pd 60 — 100 300 — 600
4201 31−35 Mo 60 — 100 300 — 600
4204 5 Ta 60 — 100 300 — 600
НТ60 40−50 Nb 60 — 100 300 — 600
СТ! Ti-Al-Zr-Sn 60 — 100 300 — 600
СТ4 Ti-Al-Sn-Mo-Sr 60 — 100 300 — 600
СТ6 Ti-Al-Zr-W 60 — 100 300 — 600

Гальванический подход

Другой верный способ как узнать титан, доступен прямо в гараже. Методика основана на окрашивании этого металла посредством анодирования. Простейшая конструкция «лабораторной установки» представляет автомобильный аккумулятор, плюс которого соединен с титановой пластиной. К минусу источника постоянного тока подключают металлический стержень, обмотанный ватой смоченной в кока-коле. Идеальный вариант – любой соляной раствор.

Если провести ватой по титану, металл окрасится в течение нескольких секунд. Цвет, получаемый в процессе формирования оксидной пленки, зависит от приложенного напряжения и времени обработки поверхности. Впрочем, если задача стоит как определить титан от нержавейки, то тональность окраски не важна. Главный критерий – изменение цвета.

Видео – как отличить титан от стали данным способом:

Определение по массе

Самый легкий из этих трех металлов алюминий, самый тяжелый – сталь. Например, титановая пластина будет в полтора раза тяжелее алюминиевой и в два раза легче, чем стальная. Если образец сравнить не с чем, то придется использовать математический метод. Плотность рассматриваемых металлов нам известна и составляет:

  • у титана – 4.5 г/см³
  • у алюминия – 2.7 г/см³
  • у нержавеющей стали 7.8 г/см³

Это масса, приходящаяся на единицу объема. Остается взвесить изделие на точных весах и определить его объем. Если изделие имеет сложную форму, то проще узнать объем архимедовским способом. Опустите образец в емкость с водой и по объему вытесненной воды узнаете искомую величину. Останется вычислить плотность, разделив массу на объем, а затем свериться, соответствует ли она плотности титана.

Физические характеристики и свойства одного из самых твердых металлов — титана

Титан – элемент 4 группы 4 периода. Переходный металл, проявляет и основные, и кислотные свойства, довольно широко распространен в природе – 10 место.

Наиболее интересным для народного хозяйства является сочетание высокой твердости металла и легкости, что делает его незаменимым элементом для авиастроения.

Данная статья расскажет вам о маркировке, легирующих и иных свойствах металла титана, даст общую характеристику и интересные факты о нем.

По внешнему виду металл больше всего напоминает сталь, однако механические его качества выше. При этом титан отличается малым весом – молекулярная масса 22. Физические свойства элемента изучены довольно хорошо, однако сильно зависят от чистоты металла, что приводит к существенным отклонениям.

Кроме того, имеет значение его специфические химические свойства.

Титан устойчив к щелочам, азотной кислоте, и в то же время бурно взаимодействует с сухими галогенами, а при более высокой температуре – с кислородом и азотом.

Читайте также:  ШХ15 ковка, закалка, проблема, вопрос

Хуже того, он начинает поглощать водород еще при комнатной температуре, если имеется активная поверхность. А в расплаве впитывает кислород и водород настолько интенсивно, что расплавление приходится проводить в вакууме.

Еще одна важная особенность, определяющая физические характеристики – существование 2 фаз состояния.

  • Низкотемпературная – α-Ti имеет гексагональную плотноупакованную решетку, плотность вещества – 4,55 г/куб. см (при 20 С).
  • Высокотемпературная – β-Ti характеризуется объемно-центрированный кубической решеткой, плотность фазы, соответственно, меньше – 4, 32 г/куб. см. (при 900С).

Температура фазового перехода – 883 С.

В обычных условиях металл покрывается защитной оксидной пленкой. При ее отсутствии титан представляет большую опасность. Так, титановая пыль может взрываться, температура такой вспышки 400С. Титановая стружка является пожароопасным материалом и хранится в специальной среде.

Далее мы рассмотрим магнитные, механические, химические и физические свойства титана, его сплавов и их применение.

О структуре и свойствах титана рассказывает видео ниже:

Титан на сегодня является самым прочным среди всех существующих технических материалов, поэтому, несмотря на сложность получения и высокие требования по безопасности к производственному процессу, применяется достаточно широко.

Физические характеристики элемента довольно необычны, однако очень сильно зависят от чистоты.

Так, чистый титан и сплавы активно применяются в ракето- и авиастроении, а технический непригоден, так как из-за примесей теряет прочность при высоких температурах.

Плотность металла

Плотность вещества изменяется в зависимости от температуры и фазы.

  • При температурах от 0 до температуры плавления уменьшается от 4,51 до 4,26 г/куб. см, причем во время фазового перехода повышаете на 0,15%, а затем вновь уменьшается.
  • Плотность жидкого металла составляет 4,12 г/куб. см, а затем уменьшается с повышением температуры.

Температуры плавления и кипения

Фазовый переход разделяет все свойства металла на качества, которые может проявлять α- и β-фазы. Так, плотность до 883 С, относится к качествам α-фазы, а температуры плавления и кипения – к параметрам β-фазы.

  • Температура плавления титана (в градусах) составляет 1668+/-5 С;
  • Температура кипения достигает 3227 С.

Это один из наиболее жаростойких металлов, известных в металлургии.

Далее указана краткая характеристика титана с т.з. механических особенностей.

Горение титана рассмотрено в этом видеоролике:

Читайте также:  Что лучше нержавеющая сталь или алюминий – Статьи » Алюминий или нержавеющая сталь, что лучше

Титан примерно в 2 раза прочнее железа и в 6 раз – алюминия, что и делает его столь ценным конструкционным материалом. Показатели относятся к свойствам α-фазы.

  • Предел прочности вещества при растяжении составляет 300–450 МПа. Показатель можно увеличить до 2000 МПа, добавив некоторые элементы, а также прибегнув к специальной обработке – закалке и старению.

Интересно то, что высокую удельную прочность титан сохраняет и при самых низких температурах. Более того, при понижении температуры прочность на изгиб растет: при +20 С показатель составляет 700 МПа, а при -196 – 1100 МПа.

  • Упругость металла относительно невелика, что является существенным недостатком вещества. Модуль упругости при нормальных условиях 110,25 ГПа. Кроме того, титану свойственна анизотропия: упругость по разным направлениям достигает разного значения.
  • Твердость вещества по шкале НВ составляет 103. Причем показатель это усредненный. В зависимости от чистоты металла и характера примесей твердость может быть и выше.
  • Условный предел текучести составляет 250–380 МПа. Чем выше этот показатель, тем лучше изделия из вещества противостоят нагрузкам и тем больше сопротивляются износу. Показатель титана превосходит показатель алюминия в 18 раз.

По сравнению с другими металлами, имеющими такую же решетку, металл обладает очень приличной пластичностью и ковкостью.

Прочие методики

Существует ряд альтернативных способов, как определить титан в руках или алюминий, например. Один из вариантов – тонкая стружка. В случае титана она легко воспламеняется и ярко горит. Напротив, алюминиевая стружка плавится. При помещении «металлических опилок» дюралюминия в щелочной раствор наблюдается активное выделение водорода.

Следующий способ как отличить металл титан от стали и алюминия – теплопроводность. Численные значения параметра Вт/(м·K) для указанных металлов составляют:

  • титан – 14;
  • сталь низкоуглеродистая – 55;
  • нержавейка – 16;
  • алюминий – 250.

Титановые изделия более теплые в руках. Конечно, подход не характеризуется высокой точностью, а для отличия титана от нержавеющей стали – вообще непригоден.

Как определить титан и отличить его от других металлов?

Идентификация определенных металлов – точный и простой процесс только при наличии специального лабораторного оборудования, спектрометра в частности. В домашних условиях задача существенно усложняется. Особенно трудно отличать материалы, схожие по цвету и магнитным свойствам.

Впрочем, даже в такой ситуации существуют проверенные на практике способы, как отличить титан от других металлов. Наибольший интерес для сравнения представляют алюминий и сталь, включая нержавейку.

Тут, даже опытные мастера, регулярно работающие с металлами, и принимающие лом титана, не всегда способны четко идентифицировать, что у них конкретно в руках.

Как отличить титан от стали, алюминия

Первая пара – цветной и черный металлы. Большинство сталей обладают магнитным свойствами. Исключение составляют легированные металлы аустенитного класса. Яркий пример – нержавейка с высоким содержанием никеля. Эта марка стали, как и титан – парамагнетик. Поэтому стандартный вариант с использованием магнита тут неприемлем.

см. статьи:

  • Лом нержавейки — разновиды, описание и цены;
  • Никелевый лом.

Остаются три надежных способа как определить титан в домашних условиях:

  • математический;
  • графический;
  • абразивный;
  • гальванический.

Обозначения достаточно условны, далее раскроем каждый из вариантов подробно.

Чистая математика

В этом подходе идентификация металлов производится по весу. Недостаток метода проявляется, когда в наличии только один тип металла. Определить в руках, что тяжелее уже не получится, приходится прибегнуть к математическим вычислениям. Способствует этому существенные отличия в плотности металлов:

  • титан – 4.5;
  • железа – 7.8;
  • алюминия и дюрали – 2.7.

Для такого способа определения титана в своем хозяйстве нужно иметь точные весы

Значения параметра приведены в г/куб.см. Остается добавить, что плотность стали зависит от конкретной марки металла. Однако в абсолютных величинах эти отличия несущественны. Поэтому за плотность стали можно смело принимать значение аналогичной характеристики у железа.

Остается только уточнить объем и вес детали или куска металла. Далее, несложные вычисления, покажут, это алюминий, сталь или искомый металл — титан. Как определить объем детали сложной формы? Тут лучший вариант – закон Архимеда. Масса вытолкнутой жидкости, при погружении металлической конструкции, позволяет установить ее объем. Ситуацию упрощает плотность воды, эквивалентная 1 кг/куб.дм. Соответственно каждый грамм вытолкнутой жидкости равен одному кубическому сантиметру объема.

Конечно же  — это муторный, сложный и неточный способ, но для того, чтобы определить титан дома он имеет место быть.

Так выглядит металл титан

Рисунки на стекле

Это наиболее доступный метод, как отличить титан в домашних условия, но им нужно овладеть и иметь опыт работы с титаном. Металл оставляет характерные несмываемые следы на стекле, кафеле. Достаточно провести заостренным краем металла по одному из указанных материалов. Это именно следы, а не царапины. Подобным способом часто разрисовывают окна общественного транспорта. Отмыть титановую графику на кафеле можно раствором плавиковой кислоты, связываться с ней следует предельно осторожно.

Это метод отличается простотой и эффективностью. Титан, вопреки бытующему мнению, оставляет след даже на загрязненном стекле. Так что обезжиривать его поверхность не обязательно. Напротив, любые марки стали и алюминия способны разве что едва поцарапать стекло. Это отличный метод, чтобы определить титан.

Абразивный круг

Идеальный способ как отличить титан от нержавейки для владельцев точильного станка (что, на самом деле, совсем не обязательно). Впрочем, подойдет практически любая абразивная поверхность, даже асфальт. Контакт титана с абразивом сопровождается россыпью искр насыщенно-белого цвета. Взаимодействие стали с абразивной поверхностью характеризуется желтым или красным оттенком. Искр при этом существенно меньше.

Нержавеющие марки стали – пожаробезопасны. Обработка определенных марок нержавейки происходит вообще без искр. Это свойство используется на пожароопасных производствах. Там допускаются исключительно инструменты из нержавеющей стали. Аналогичная методика применяется в вопросе как отличить титан от алюминия. Стачивание последнего на абразивном круге также происходит практически без искр.

Этот способ определения титана можно назвать самым эффективным — цвет искры действительно будет отличным от других металлов. Вообще, тест на искру является одним из самых популярных и правильных для определения и распознования разных металлов.

Читайте также  Как почистить окислившийся металл

— как отличить титан от магния и алюминия:

Гальванический подход

Другой верный способ как узнать титан, доступен прямо в гараже. Методика основана на окрашивании этого металла посредством анодирования. Простейшая конструкция «лабораторной установки» представляет автомобильный аккумулятор, плюс которого соединен с титановой пластиной. К минусу источника постоянного тока подключают металлический стержень, обмотанный ватой смоченной в кока-коле. Идеальный вариант – любой соляной раствор.

Если провести ватой по титану, металл окрасится в течение нескольких секунд. Цвет, получаемый в процессе формирования оксидной пленки, зависит от приложенного напряжения и времени обработки поверхности. Впрочем, если задача стоит как определить титан от нержавейки, то тональность окраски не важна. Главный критерий – изменение цвета.

— как отличить титан от стали данным способом:

Источники

  • https://ArmRinok.ru/stal/kak-otlichit-titan-ot-nerzhavejki.html
  • https://spaindonesia.ru/oborudovanie/kak-opredelit-titan.html
  • https://npf-tvorchestvo.ru/raznoe/kak-opredelit-titan-v-domashnih-usloviyah.html
  • https://nwjs.ru/prokat/kak-otlichit-titan-ot-stali.html
  • https://sgpo56.ru/stali/rzhaveet-li-titan.html
  • https://gs16.ru/stali/kak-opredelit-titan.html
  • http://ooo-asteko.ru/kak-otlichit-titan-ot-drugih-metallov/

[свернуть]