Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.
Фото — Cхема гирлянды бегущий огонь
Бывают:
- ABB запираемые тиристоры (GTO),
- стандартные SEMIKRON,
- мощные лавинные типа ТЛ-171,
- оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
- симметричные ТС-106-10,
- низкочастотные МТТ,
- симистор BTA 16-600B или ВТ для стиральных машин,
- частотные ТБЧ,
- зарубежные TPS 08,
- TYN 208.
Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.
Фото — Тиристор
Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).
Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.
Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.
Аналоги
Для замены рассматриваемого тиристора КУ202Н подойдут зарубежные аналоги: ВТХ32S100, H20T15CN, 1N4202. При этом следует помнить, что все они имеют другие размеры, поэтому при замене придётся менять место под монтаж. Среди отечественных изделий также можно найти Т112-10.
Тиристор 2У202Н | | Радиодетали в приборах
Тиристор 2У202Н Справочник содержания драгоценных металлов в радиодеталях основан на справочных данных различных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
Тиристоры могут содержать золото, серебро, платину и МПГ (Металлы платиновой группы, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ). Силовые тиристоры содержат чистое серебро в виде пластин.
Принцип действия тиристора
Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т. е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля.
Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.
Маркировка тиристора
Т 143 630 16 Т1 А3 УХЛ 1 2 3 4 5 6 7
1 Т – Тиристор; ТЛ – лавинный тиристор 2 Конструктивное исполнение 3 Средний ток в открытом состоянии; А 4 Класс по напряжению 5 Критическая скорость нарастания напряжения в закрытом состоянии 6 Группа по времени выключения 7 Климатическое исполнение
Характеристики
Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.
Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:
Схема тиристорного регулятора на однопереходном транзисторе.
На рисунке ниже — схема тиристорного регулятора, с лампой накаливания в виде нагрузки.
R1 — 100 КОм — переменный, мощностью 0,5 Вт, любого типа. Резисторы R2 — 3 КОм, R3 — 1 КОм, R4 — 100 Ом, R5 — 30 КОм — МЛТ. VD1 — стабилитрон Д814В VD2 — КД105Б VD3 — КД202Р VS1 — КУ202Н Конденсатор С1 — 0,1МФ 400В., любого типа. Транзистор VT1 — КТ117А Плавкий предохранитель 0.5 — 1.5 Ампер(в зависимости от мощности лампы.)
На главную страницу В начало
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.
Фото — применение Тиристора вместо ЛАТРа
Не стоит забывать и про тиристор зажигания для мотоциклов.
Вступление.
Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/
Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.
Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.
Проверка в режиме коммутации
Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:
- лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
- источник малого напряжения, например, пальчиковая батарейка типа АА;
- несколько проводников и источник напряжения 12 В.
Для осуществления проверки выполняем следующие шаги:
- Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
- Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.
После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.
Дополнительный материал.
Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.
Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.
Тип прибора | Катод | Управ. | Анод |
BT169D(E, G) | 1 | 2 | 3 |
CR02AM-8 | 3 | 1 | 2 |
MCR100-6(8) | 1 | 2 | 3 |
28 Апрель, 2011 (23:10) в Источники питания, Сделай сам
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.
Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.
Фото — Тиристор КУ221ИМ
Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Типичные тиристорные ВАХ
Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:
Фото — характеристика тиристора ВАХ
- Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
- В участке Vво осуществляется положение «ВКЛ» тиристора;
- Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
- В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
- Точки 0 и Vbr – это участок с запиранием тиристора;
- После этого следует отрезок Vbr — он обозначает режим обратного пробоя.
Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.
Фото — ВАХ тиристора
Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.
КУ202 : предельные характеристики тиристоров
Напряжение в закрытом состоянии (постоянное): | |
КУ202А, КУ202Б | 25 В |
КУ202В, КУ202Г | 50 В |
КУ202Д, КУ202Е, 2У202Д, 2У202Е | 100 В |
КУ202Ж, КУ202И, 2У202Ж, 2У202И | 200 В |
КУ202К, КУ202Л, 2У202К, 2У202Л | 300 В |
КУ202М, КУ202Н, 2У202М, 2У202Н | 400 В |
Обратное напряжение тиристоров КУ202 (постоянное): |
|
КУ202Е, 2У202Е | 100 В |
КУ202И, 2У202И | 200 В |
КУ202Л, 2У202Л | 300 В |
КУ202Н, 2У202Н | 400 В |
Обратное напряжение управления (постоянное) | 10 В |
Прямое напряжение управления (постоянное) | 10 В |
Скорость нарастания напряжения | 5 В/мкс |
Постоянный ток в открытом состоянии при Тк ≤ +70°C | 10 A |
Импульсный ток в открытом состоянии при tи ≤ 10 мс, Iос,ср ≤ 5 А и Тк ≤ +70°C: | 30 A |
Прямой ток управления (постоянный) | 200 мА |
Прямой ток управления (импульсный): | |
При Тк ≤ +70°C | 300 мА |
При tи ≤ 50 мкс и Тк ≤ +70°C | 500 мА |
Обратный ток управления (постоянный) | 5 мА |
Рассеиваемая мощность (средняя) | |
при Тк ≤ +70° | 20 Вт |
при Тк = Тк, макс | 1,5 Вт |
Рассеиваемая мощность управления (импульсная): | |
tи ≤ 10 мкс, Uу, от, и ≤ 20 В и Тк ≤ +70°C | 20 Вт |
tи ≤ 50 мкс и Тк ≤ +70° | 2,5 Вт |
Температура корпуса тиристоров КУ202 : | |
КУ202А — КУ202Н | +85°C |
2У202Д — 2У202Н | +110°C |
Рабочая температура: | |
КУ202А — КУ202Н | -60…+75°C |
2У202Д — 2У202Н | -60…+100°C |
При эксплуатации тиристоров КУ202 между катодом и управляющим электродом должен быть включён шунтирующий резистор сопротивлением 51 Ом. При отрицательном напряжении на аноде тиристора подача тока управления не допускается.
Тиристоры ? Это очень непросто!
Тиристоры и симисторы
Рассылка состоит из 5 уроков:
1. Урок №1 — «Что такое тиристор и динистор»
2. Урок №2 — «Динистор и тиристор в цепях постоянного тока»
3. Урок №3 — «Тиристор в цепи переменного тока. Фазовый метод»
4. Урок №4 — «Тиристор в цепи переменного тока. Импульсно — фазовый метод»
5. Урок №5 — «Тиристорный регулятор в зарядном устройстве»
В этих уроках, в простой и удобной форме, излагаются основные сведения по полупроводниковым приборам: динисторам и тиристорам.
Что такое динистор и тиристор, выды тиристоров и их вольт — амперные характеристики, работа динисторов и тиристоров в цепях постоянного и переменного тока, транзисторные аналоги динистора и тиристора.
А так же: способы управления электрической мощностью переменного тока, фазовый и импульсно-фазовый методы.
Каждый теоретический материал подтверждается практическими примерами.
Приводятся действующие схемы: релаксационного генератора и фиксированной кнопки, реализованных на динисторе и его транзисторном аналоге; схема защиты от короткого замыкания в стабилизаторе напряжения и многое другое.
Особенно интересна для автолюбителей схема зарядного устройства для аккумулятора на 12 вольт на тиристорах.
Приводятся эпюры формы напряжения в рабочих точках действующих устройств управления переменным напряжением при фазовом и импульсно-фазовом методах.
Чтобы получить эти бесплатные уроки подпишитесь на рассылку, заполните форму подписки и нажмите кнопку «Подписаться».
Через некоторое время вы уже сможете начать изучение уроков.
Share
Распиновка
Цоколевка КУ202Н выполнена в металлостеклянном корпусе. Он имеет один вывод под резьбу — анод и два вывода под пайку — катод и управляющий электрод. Анодный вывод сделан под гайку М6. Маркировка тиристора нанесена на корпус. Вес — не более 14 грамм.
Параметры тиристора КУ 202
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202А | КУ202Б | КУ202В | КУ202Г | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 25 | 25 | 50 | 50 |
Постоянное обратное напряжение | Uобр max | В | — | — | — | — |
Постоянное обратное напряжение управления | Uу. обр max | В | 10 | 10 | 10 | 10 |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202Д | КУ202Е | КУ202Ж | КУ202И | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 120 | 120 | 10 | 10 |
Постоянное обратное напряжение | Uобр max | В | — | — | 240 | 240 |
Постоянное обратное напряжение управления | Uу. обр max | В | 10 | 10 | — | — |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202К | КУ202Л | КУ202М | КУ202Н | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 10 | 10 | 10 | 10 |
Постоянное обратное напряжение | Uобр max | В | 360 | 360 | 480 | 480 |
Постоянное обратное напряжение управления | Uу. обр max | В | — | — | — | — |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Определение управляющего напряжения
Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.
Читайте также: Набор фрезерных сверл 3/4/5/6/6,5/8 мм. для дерева и металла
У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:
-
для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера; - подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
- перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
- убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.
Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.
Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.
Технические параметры тиристора
Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.
Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.
Читайте также: Керхер своими руками сделать в домашних условиях
Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.
Схема подключения
Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.
Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.
Читайте также: Необычные деревья для сада
Особенности монтажа
К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.
Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +260 0 С. Время пайки не более 3 с.
Как проверить тиристор: 3 доступные методики для новичков
Принцип этой технологии я буду показывать на примере силового тиристора КУ202Н по одной простой причине: он оказался под рукой при написании статьи, а все более мощные модели я умудрился раздать друзьям для их самоделок…
Способы электрических
проверок буду показывать на его примере. Для этого публикую важные характеристики, которые надо учитывать при работе. Они делятся на две группы:
- предельные;
- номинальные.
Параметры первой категории относятся к импульсному режиму, используемому кратковременно. Они нас не интересуют: длительную эксплуатацию могут создать только номинальные показатели.
Обращаем внимание на:
- Максимально допустимое напряжение — 400 В;
- Постоянный ток в открытом и закрытом состоянии — 10 А;
- Ток удержания — 200 мА;
- Отпирающий постоянный ток — 100 мА.
Эти данные для других полупроводниковых приборов можно взять в технических справочниках и на многочисленных сайтах в сети интернет.
Самый первый метод проверки: стрелочным тестером или цифровым мультиметром
Оценка состояния исправности КУ202Н прибором Ц4324 за 3 шага
Такой раритетный измерительный инструмент старого электрика у меня до сих пор в рабочем состоянии. Он сохранился благодаря знаку качества и постоянной внимательности при замерах.
Шаг №1. Выставление режима и замер закрытого состояния перехода
Устанавливаю центральным переключателем режим измерения сопротивлений и кнопкой — предел «килоомы». Плюсовой вывод цешки сажу на анод, а минусовой подключаю к катоду.
Для наглядности пометил их на фотографии ярким красным цветом «+» и «-» прямо на изоляции крокодилов.
Измерительная стрелка показывает очень большое сопротивление. Оно же будет при обратной полярности выводов. Можете проверить.
Шаг №2. Открытие тиристора
Касанием руки подключаю вывод управляющего электрода на корпус (анод) полупроводника.
Стрелка резко отклоняется к началу шкалы в сторону меньшего сопротивления. Показание порядка 0,15 k свидетельствует об открытии n-p перехода.
Шаг №3. Проверка открытого состояния при снятии управляющего сигнала
Отвожу провод вывода от корпуса полупроводника и наблюдаю показание стрелки.
Оно не изменилось: переход сохранил свое открытое положение. Он исправен.
Проверка состояния КУ202Н цифровым мультиметром
Принципиальных отличий анализа тиристорных устройств здесь нет. Технология та же. Показываю ее фотографиями на примере моего карманного мультиметра Mestek MT-102.
Для первого шага перевожу его в режим проверки полупроводников и подключаю прибор крокодилами.
На дисплее видно, что переход закрыт: сопротивление большое.
Затем перемыкаю вывод управляющего электрода на анод. Полупроводник открылся.
При разрыве перемычки показания на дисплее не изменились.
Доступный для всех способ проверки током от батарейки и обычной лампочкой
Эта методика популярна, но она требует предварительно учитывать технические характеристики испытуемого прибора и выходные величины от нагрузки, создаваемые лампочкой.
Для силовых транзисторов это не критично, но у маломощных изделий можно нерасчетным током повредить структуру электронных компонентов.
Демонстрацию методики буду выполнять на примере конструкции самого доступного китайского фонарика на светодиодах и обычной лампочки. Принципиальных различий нет при использовании одной батарейки формата АА или ААА.
На всякий случай выполнил мультиметром замер тока лампочки.
Получил результат 183 миллиампера, что вполне нормально для нашего случая.
Теперь использую этот блок батареек для проверки. Подаю его плюс на анод, а минус на катод проверяемого полупроводника через лампочку.
Свечения нет. Это значит, что сопротивление проверяемой цепи большое, все переходы закрыты.
Замыкаю управляющий электрод на корпус прибора — анод.
Лампочка загорается: прибор открылся.
Запуск тиристора в работу можно выполнить подачей плюса напряжения от пальчиковой батарейки на его анод, а минус необходимо предварительно подключить к управляющему электроду.
Так рекомендуют справочники, но я предпочитаю первый способ. Он проще.
Теперь размыкаю созданное подключение. Лапочка не прекращает светиться: ток продолжает течь по цепи анод-катод.
Полупроводник остался в открытом положении, он исправен.
Как можно проверить тиристор на электронной плате без выпаивания со схемы: советы бывалых
Работу, как и всегда, необходимо выполнять при снятом напряжении. Это делается не только в целях безопасности, но и для достоверности результата.
Следующим шагом потребуется выцепить из схемы платы управляющий электрод. Разъединить его контакт можно паяльником или перерезать дорожку ножом.
Я же буду проводить эксперимент на том же самом КУ202Н без платы. Для проверки потребуется 2 отдельных прибора:
- омметр;
- милливольтметр постоянного тока.
Их можно заменить двумя мультиметрами или тестерами, что я и показываю следующими фотографиями. Свой тестер Ц4324 перевожу в режим измерения постоянного напряжения на пределе =1,2В. Подключаю его к аноду и катоду.
Mestek MT-102 устанавливаю в режим омметра и крокодилами сажу его на выводы полупроводника так, чтобы плюс попал на управляющий электрод, а минус — на анод.
Стрелка тестера отклонилась вправо, показывая значение меньшее вольта. По этому замеру можно судить об исправности полупроводникового перехода.
Любая из трех методик проверки основана на принципах работы тиристоров. Она учитывает протекание в них токов через полупроводниковые переходы. При их выполнении важно оценить четыре последовательных этапа: Обычное закрытое состояние до получения команды.Открытие по команде.Удержание в открытом состоянии при отключении управляющего сигнала.Закрытие при пропадании питания.
Для более наглядного представления этих процессов я специально записал видеоролик. Смотрите его здесь.
Однако я рассмотрел только КУ202Н, как довольно распространенную модель, хоть она уже и снята с производства. В одной статье сложно показать все остальные. А их очень много.
Тиристорная схема регулятора не излучающая помехи
Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.
Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.
Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).
Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.
На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.
Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.
Читайте также: Рекомендаци по эксплуатации узких ленточных пил СТФ Славянский двор
Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.
С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.
Начало тестирования тиристора мультиметром
Сначала потрудитесь расположение электродов определить:
- катод;
- анод;
- управляющий электрод (база).
Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.
Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.
- Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
- Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.
Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:
Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.
Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород
Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания
Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.
Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:
Фото — тестер тиристоров
Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.
Фото — схема тестера для тиристоров
Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Назначение динистора
Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.
Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.
Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.
Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.
В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.
На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.
Читайте также: Большая Энциклопедия Нефти и Газа. Электропомещение это
- https://www.asutpp.ru/tiristory.html
- https://mirshem.ru/ku202n/
- https://tex16.ru/teoriya/ku202n-chem-zamenit.html
- https://shematok.ru/tiristory/ku202n
- https://instanko.ru/elektrichestvo/tiristor-ku202n.html
- https://ectrl.ru/pribory/tiristor-ku202.html
- https://SevenTools.ru/faq/tiristor-ku-202.html
- https://sakhkor.ru/svarka/ku202a-harakteristiki.html
- https://rmms66.ru/ku202n-harakteristiki.html
- https://TrubyMaster.ru/tiristory-ku-202-harakteristiki/
- https://teplobloknn.ru/instrumenty/ku202n-harakteristiki-shemy-vklyucheniya.html
- https://PlazmoSvarka.ru/sovety/tiristory-ku202.html
- https://ElectrikBlog.ru/tiristory-princzipy-raboty-dlya-nachinayushhih-elektrikov-prostymi-slovami-i-3-metodiki-proverki-ih-rabotosposobnosti-v-domashnih-usloviyah/